Bmc Cell Biology Loss of Dictyostelium Hspc300 Causes a Scar-like Phenotype and Loss of Scar Protein
نویسنده
چکیده
Background: SCAR/WAVE proteins couple signalling to actin polymerization, and are thus fundamental to the formation of pseudopods and lamellipods. They are controlled as part of a fivemembered complex that includes the tiny HSPC300 protein. It is not known why SCAR/WAVE is found in such a large assembly, but in Dictyostelium the four larger subunits have different, clearly delineated functions. Results: We have generated Dictyostelium mutants in which the HSPC300 gene is disrupted. As has been seen in other regulatory complex mutants, SCAR is lost in these cells, apparently by a posttranslational mechanism, though PIR121 levels do not change. HSPC300 knockouts resemble scar mutants in slow migration, roundness, and lack of large pseudopods. However hspc300-colonies on bacteria are larger and more similar to wild type, suggesting that some SCAR function can survive without HSPC300. We find no evidence for functions of HSPC300 outside the SCAR complex. Conclusion: HSPC300 is essential for most SCAR complex functions. The phenotype of HSPC300 knockouts is most similar to mutants in scar, not the other members of the SCAR complex, suggesting that HSPC300 acts most directly on SCAR itself. Background The WASP/SCAR family of proteins are key regulators of actin polymerisation, connecting signalling molecules to the activation of the Arp2/3 complex. SCAR/WAVE proteins, in particular, play an important role in the regulation of actin dynamics at the leading edges of moving cells. Biochemical studies in a range of organisms demonstrate that SCAR/WAVE is found in a 1:1:1:1:1 complex with four other proteins (PIR121, Nap1, Abi2 and HSPC300) [1,2]. It is becoming clear, in particular from studies in Dictyostelium, that individual components of the complex regulate SCAR through different signalling pathways and that some may also have additional SCAR independent functions in vivo. [3-6] Most evidence now suggests that all members of the complex are needed for the correct localisation and function of SCAR [7,8]. The smallest SCAR complex member, HSPC300, ranges from 68 to 110 amino acids in length, giving a size of between 8 and 14 kDa. Surprisingly little is known about its contribution to SCAR complex function and stability, perhaps because of the experimental difficulty associated with its smallness. Several studies investigating the function of the plant HSPC300 homologue, BRICK1, have Published: 19 February 2009 BMC Cell Biology 2009, 10:13 doi:10.1186/1471-2121-10-13 Received: 9 July 2008 Accepted: 19 February 2009 This article is available from: http://www.biomedcentral.com/1471-2121/10/13 © 2009 Pollitt and Insall; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
SCAR, a WASP-related Protein, Isolated as a Suppressor of Receptor Defects in Late Dictyostelium Development
G protein-coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein-coupled receptors, the cARs. In a strain where the cAR2 receptor gene...
متن کاملAbi Mutants in Dictyostelium Reveal Specific Roles for the SCAR/WAVE Complex in Cytokinesis
Actin polymerization drives multiple cell processes involving movement and shape change. SCAR/WAVE proteins connect signaling to actin polymerization through the activation of the Arp2/3 complex. SCAR/WAVE is normally found in a complex with four other proteins: PIR121, Nap1, Abi2,and HSPC300 (Figure S1A available online) [1-3]. However,there is no consensus as to whether the complex functions ...
متن کاملControl of SCAR activity in Dictyostelium discoideum.
The WASP (Wiskott-Aldrich syndrome protein)/SCAR (suppressor of cAMP receptor) family of adaptor proteins regulate actin polymerization by coupling Rho-family GTPases to the activation of the Arp2/3 complex. SCAR exists within a complex of proteins, including Nap1 (Nck-associated protein 1), PIR121 (p53-inducible mRNA 121), Abi2 (Abl-interactor 2) and HSPC300. This complex was first reported to...
متن کاملNap1 Regulates Dictyostelium Cell Motility and Adhesion through SCAR-Dependent and -Independent Pathways
SCAR--also known as WAVE--is a key regulator of actin dynamics. Activation of SCAR enhances the nucleation of new actin filaments through the Arp2/3 complex, causing a localized increase in the rate of actin polymerization . In vivo, SCAR is held in a large regulatory complex, which includes PIR121 and Nap1 proteins, whose precise role is unclear. It was initially thought to hold SCAR inactive ...
متن کاملSCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis.
Cell division requires the tight coordination of multiple cytoskeletal pathways. The best understood of these involves myosin-II-dependent constriction around the cell equator, but both Dictyostelium and mammalian cells also use a parallel, adhesion-dependent mechanism to generate furrows. We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009